advertisement

Topcon

Abstract #100616 Published in IGR 23-1

Effect of trans-resveratrol on glutamate clearance and visual behaviour in rats with glutamate induced retinal injury

Hann Yih T; Abd Ghapor AA; Agarwal R; Razali N; Iezhitsa I; Mohd Ismail N
Experimental Eye Research 2022; 220: 109104


Glutamate-induced excitotoxic injury is widely described as a prominent pathophysiological mechanism in several neurodegenerative diseases including glaucoma. Glaucoma, the leading cause of irreversible blindness, is characterized by loss of retinal ganglion cells (RGC). Currently, the treatment focuses on lowering intraocular pressure (IOP) and no neuroprotective therapies are available. Since excessive glutamate-mediated neurotransmission underlies glaucomatous RGC apoptosis, enhancing synaptic glutamate clearance by glutamate transporters in glial cells is expected to protect against excitotoxic injury. Trans-resveratrol is known for its neuroprotective effects; however, its effects on the expression of glutamate transporters and glutamate clearance in retina remain unclear. Hence, in the current study, we investigated the protective effects of trans-resveratrol against glutamate-induced retinal injury in rats. Rats were intravitreally injected with glutamate alone or glutamate with trans-resveratrol as pre- and post-treatment. Animals were subjected to Open Field Test (OFT) on day six and a two-chamber mirror test on day seven post-injection. Subsequently, rats were sacrificed and retinal expression of excitatory amino acid transporter (EAAT)1 and EAAT2 gene and protein was determined using PCR and ELISA, respectively. Retinal glutamate concentration was measured using ELISA and retinal morphology was studied on H&E-stained retinal sections. It was observed that pre-treatment with trans-resveratrol causes gene expression for EAAT1 and EAAT2 to increase by 2.51 and 1.93 folds compared to glutamate-treated group (p < 0.001 and p < 0.01, respectively); while the same in trans-resveratrol post-treatment group showed a 1.58- and 1.44 folds upregulation (p < 0.05).The retinal EAAT1 and EAAT2 protein expression was significantly greater in trans-resveratrol pre-treatment group compared to glutamate-treated group (p < 0.05) but not in post-treatment group. Retinal glutamate concentration was1.64 folds greater in glutamate-treated group than the vehicle-treated group (p < 0.01) but the same was 1.27-fold lower in trans-resveratrol pre-treatment group compared to glutamate-treated group (p < 0.01). Corresponding to these findings, we observed preservation of retinal morphology and visual behaviour in trans-resveratrol pre-treatment group compared to glutamate-treated group. We did not observe similar effects of trans-resveratrol when it was given as post-treatment after glutamate administration. In conclusion, current study showed that pre-treatment with trans-resveratrol protects against glutamate induced changes in retinal morphology and visual behaviour by increasing the expression of EAAT1 and EAAT2 and increasing glutamate clearance in rat retinas. The results of this study may be relevant to disease conditions involving excitotoxic neuronal injury.

School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.

Full article

Classification:

15 Miscellaneous



Issue 23-1

Change Issue


advertisement

WGA Rescources