advertisement

Topcon

Abstract #104615 Published in IGR 23-2

Bionic eye system mimicking microfluidic structure and intraocular pressure for glaucoma surgery training

Yamanaka T; Niino T; Omata S; Harada K; Mitsuishi M; Sugimoto K; Ueta T; Totsuka K; Shiraya T; Araki F; Takao M; Aihara M; Arai F
PLoS ONE 2022; 17: e0271171


Among increasing eye diseases, glaucoma may hurt the optic nerves and lead to vision loss, the treatment of which is to reduce intraocular pressure (IOP). In this research, we introduce a new concept of the surgery simulator for Minimally Invasive Glaucoma Surgery (MIGS). The concept is comprised of an anterior eye model and a fluidic circulatory system. The model made of flexible material includes a channel like the Schlemm's canal (SC) and a membrane like the trabecular meshwork (TM) covering the SC. The system can monitor IOP in the model by a pressure sensor. In one of the MIGS procedures, the TM is cleaved to reduce the IOP. Using the simulator, ophthalmologists can practice the procedure and measure the IOP. First, considering the characteristics of human eyes, we defined requirements and target performances for the simulator. Next, we designed and manufactured the prototype. Using the prototype, we measured the IOP change before and after cleaving the TM. Finally, we demonstrated the availability by comparing experimental results and target performances. This simulator is also expected to be used for evaluations and developments of new MIGS instruments and ophthalmic surgery robots in addition to the surgical training of ophthalmologists.

Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan.

Full article

Classification:

15 Miscellaneous



Issue 23-2

Change Issue


advertisement

Topcon