advertisement
BACKGROUND: Mitochondria are essential cellular organelles that are responsible for oxidative stress-induced damage in age-dependent neurodegenerations such as glaucoma. Previous studies have linked mitochondrial DNA (mtDNA) mutations to cellular energy shortages that result in eye degeneration. METHOD: ology To look for nucleotide variations in mtDNA in exfoliation syndrome/glaucoma (XFS/XFG), we performed a polymerase chain reaction (PCR) to amplify the entire coding region of the mitochondrial genome from peripheral blood of XFS/XFG (n = 25) patients and controls (n = 25). RESULTS: This study identified a total of 65 variations in XFS/XFG patients, of which 25 (38%) variations were non-synonymous single-nucleotide polymorphism (nsSNPs). Out of 25 nsSNPs, seven (five nsSNP in and two in gene) were predicted as pathogenic using four different software, namely, SIFT, Polyphene2, mutation taster, and MutPred2. The pathogenic nsSNPs were then subjected to structural change analysis using online tools. CONCLUSIONS: The pathogenic nsSNPs were found in both proteins' transmembrane domains and were expected to be conserved, but with lower protein stability (ΔΔG <- 0.5), indicating a possibly harmful effect in exfoliation. However, three-dimensional protein analysis indicated that the predicted mutations in and were unlikely to alter the protein function.
Full article