advertisement
BACKGROUND: Glaucoma is multifactorial, but the interrelationship between risk factors and structural changes remains unclear. Here, we adjusted for confounding factors in glaucoma patients with differing risk factors, and compared differences in structure and susceptible areas in the optic disc and macula. METHODS: In 458 eyes with glaucoma, we determined confounding factors for intraocular pressure (IOP), central corneal thickness (CCT), axial length (AL), LSFG-measured ocular blood flow (OBF), which was assessed with laser speckle flowgraphy-measured mean blur rate in the tissue area (MT) of the optic nerve head, biological antioxidant potential (BAP), and systemic abnormalities in diastolic blood pressure (dBP). To compensate for measurement bias, we also analyzed corrected IOP (cIOP; corrected for CCT) and corrected MT (cMT; corrected for age, weighted retinal ganglion cell count, and AL). Then, we determined the distribution of these parameters in low-, middle-, and high-value subgroups and compared them with the Kruskal-Wallis test. Pairwise comparisons used the Steel-Dwass test. RESULTS: The high-cIOP subgroup had significantly worse mean deviation (MD), temporal, superior, and inferior loss of circumpapillary retinal nerve fiber layer thickness (cpRNFLT), and large cupping. The low-CCT subgroup had temporal cpRNFLT loss; the high-CCT subgroup had low cup volume. The high-AL subgroup had macular ganglion cell complex thickness (GCCT) loss; the low-AL subgroup had temporal cpRNFLT loss. The high-systemic-dBP subgroup had worse MD, total, superior, and inferior cpRNFLT loss and macular GCCT loss. The low-BAP subgroup had more male patients, higher dBP, and cpRNFLT loss in the 10 o'clock area. The high-OBF subgroup had higher total, superior and temporal cpRNFLT and macular GCCT. CONCLUSIONS: Structural changes and local susceptibility to glaucomatous damage show unique variations in patients with different risk factors, which might suggest that specific risk factors induce specific types of pathogenesis and corresponding glaucoma phenotypes. Our study may open new avenues for the development of precision medicine for glaucoma.
Full article