advertisement

Topcon

Abstract #108089 Published in IGR 23-4

AxoNet 2.0: A Deep Learning-Based Tool for Morphometric Analysis of Retinal Ganglion Cell Axons

Goyal V; Read AT; Ritch MD; Hannon BG; Rodriguez GS; Brown DM; Feola AJ; Hedberg-Buenz A; Cull GA; Reynaud J; Garvin MK; Anderson MG; Burgoyne CF; Ethier CR
Translational vision science & technology 2023; 12: 9


PURPOSE: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normal-appearing RGC axons and (ii) quantifies their morphometry from light micrographs. METHODS: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports. RESULTS: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 ± 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P ≪ 0.001) with preferential loss of large axons (P < 0.001). CONCLUSIONS: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy. TRANSLATIONAL RELEVANCE: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Full article

Classification:

15 Miscellaneous



Issue 23-4

Change Issue


advertisement

Oculus