advertisement

Topcon

Abstract #109286 Published in IGR 24-1

Low mitochondrial DNA copy number in buffy coat DNA of primary open-angle glaucoma patients

Vallbona-Garcia A; Hamers IHJ; van Tienen FHJ; Ochoteco-Asensio J; Berendschot TTJM; de Coo IFM; Benedikter BJ; Webers CAB; Smeets HJM; Gorgels TGMF; Gorgels TGMF
Experimental Eye Research 2023; 232: 109500


Primary open-angle glaucoma (POAG) is characterized by optic nerve degeneration and irreversible loss of retinal ganglion cells (RGCs). The pathophysiology is not fully understood. Since RGCs have a high energy demand, suboptimal mitochondrial function may put the survival of these neurons at risk. In the present study, we explored whether mtDNA copy number or mtDNA deletions could reveal a mitochondrial component in POAG pathophysiology. Buffy coat DNA was isolated from EDTA blood of age- and sex-matched study groups, namely POAG patients with high intraocular pressure (IOP) at diagnosis (high tension glaucoma: HTG; n = 97), normal tension glaucoma patients (NTG, n = 37), ocular hypertensive controls (n = 9), and cataract controls (without glaucoma; n = 32), all without remarkable comorbidities. The number of mtDNA copies was assessed through qPCR quantification of the mitochondrial D-loop and nuclear B2M gene. Presence of the common 4977 base pair mtDNA deletion was assessed by a highly sensitive breakpoint PCR. Analysis showed that HTG patients had a lower number of mtDNA copies per nuclear DNA than NTG patients (p-value <0.01, Dunn test) and controls (p-value <0.001, Dunn test). The common 4977 base pair mtDNA deletion was not detected in any of the participants. A lower mtDNA copy number in blood of HTG patients suggests a role for a genetically defined, deficient mtDNA replication in the pathology of HTG. This may cause a low number of mtDNA copies in RGCs, which together with aging and high IOP, may lead to mitochondrial dysfunction, and contribute to glaucoma pathology.

University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands. Electronic address: a.vallbonagarcia@maastrichtuniversity.nl.

Full article

Classification:

15 Miscellaneous



Issue 24-1

Change Issue


advertisement

Oculus