advertisement
Understanding the metabolic dysfunctions and underlying complex pathological mechanisms of neurodegeneration in glaucoma could help discover disease pathways, identify novel biomarkers, and rationalize newer therapeutics. Therefore, we aimed to investigate the local metabolomic alterations in the aqueous humor and plasma of primary glaucomatous patients. This study cohort comprised primary open-angle glaucoma (POAG), primary angle-closure glaucoma (PACG), and cataract control groups. Aqueous humor and plasma samples were collected from patients undergoing trabeculectomy or cataract surgery and subjected to high-resolution mass spectrometry (HRMS) analysis. Spectral information was processed, and the acquired data were subjected to uni-variate as well as multi-variate statistical analyses using MetaboAnalyst ver5.0. To further understand the localized metabolic abnormalities in glaucoma, metabolites affected in aqueous humor were distinguished from metabolites altered in plasma in this study. Nine and twelve metabolites were found to be significantly altered (p < 0.05, variable importance of projection >1 and log fold change ≥0.58/≤ -0.58) in the aqueous humor of PACG and POAG patients, respectively. The galactose and amino acid metabolic pathways were locally affected in the PACG and POAG groups, respectively. Based on the observation of the previous findings, gene expression profiles of trace amine-associated receptor-1 (TAAR-1) were studied in rat ocular tissues. The pharmacodynamics of TAAR-1 were explored in rabbits using topical administration of its agonist, β-phenyl-ethylamine (β-PEA). TAAR-1 was expressed in the rat's iris-ciliary body, optic nerve, lens, and cornea. β-PEA elicited a mydriatic response in rabbit eyes, without altering intraocular pressure. Targeted analysis of β-PEA levels in the aqueous humor of POAG patients showed an insignificant elevation. This study provides new insights regarding alterations in both localized and systemic metabolites in primary glaucomatous patients. This study also demonstrated the propensity of β-PEA to cause an adrenergic response through the TAAR-1 pathway.
Department of Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
Full article