advertisement

Topcon

Abstract #11294 Published in IGR 6-3

Effects of adenosine on optic nerve head circulation in rabbits

Hirao M; Oku H; Goto W; Sugiyama T; Kobayashi T; Ikeda T
Experimental Eye Research 2004; 79: 729-735


This study was performed to determine whether intravitreal or intravenous adenosine can alter the microcirculation in the optic nerve head (ONH) of rabbits. Capillary blood flow in the ONH was measured serially with a laser speckle tissue analyser for 2 hr after the intravitreal (0·1, 1·0 and 10 nmol) or intravenous (0·2 and 0·6 mg kg-1 injections of adenosine. In addition, the effect of specific adenosine A1 and A2a antagonists and an adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel blockers on the adenosine-induced changes on the ONH blood flow was analysed. Intravitreal adenosine increased the capillary blood flow in the ONH in a dose-dependent manner, while intravenous adenosine had no effect. Co-administration of the specific adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 nmol) significantly suppressed (P = 0.006, ANOVA) the increase in the ONH blood flow induced by adenosine (10 nmol). The specific A(2a) receptor antagonist, 8-(3-chlorostyryl) caffeine (CSC, 10 nmol), had a weak effect in inhibiting the increase but the change was not significant (P = 0·08, ANOVA). Both specific A1 and A2a receptor agonists, N6-cyclopentyladenosine (CPA, 10 nmol) and 2-p-(2-carboxyethyl) phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS-21680, 10 nmol), increased the ONH tissue blood flow (P<0.01, ANOVA). Glibenclamide (10 nmol), a selective KATP channels antagonist, suppressed the increase of ONH blood flow induced by 10 nmol adenosine significantly (P < 0·001, ANOVA). On the other hand, 10 nmol of 8-Br-cAMP, a cAMP analog, failed to enhance the capillary blood flow in the ONH. These results indicate that adenosine increases the capillary blood flow in the ONH of rabbits, and it acts through A1 and A2a receptors from the ablumenal side where pericytes are located. Activation of K(ATP) channels is strongly related to the mechanism of adenosine-induced increase in ONH blood flow, while the participation of adenylate cyclase is less likely.

Dr. M. Hirao, Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan


Classification:

6.11 Bloodflow measurements (Part of: 6 Clinical examination methods)
11.14 Investigational drugs; pharmacological experiments (Part of: 11 Medical treatment)



Issue 6-3

Change Issue


advertisement

WGA Rescources