advertisement
The retina is a high-metabolism tissue composed of various cell types with complex functions that relies heavily on the blood supply to maintain homeostasis. Retinal ischemia-reperfusion injury is a critical pathogenic mechanism in glaucoma, and changes in lipid molecules may lead to retinal tissue damage. However, retinal lipid profile alterations caused by this mechanism remain unclear. Thus, this study employed a retinal ischemia-reperfusion model to analyze changes in the lipid profile between sham-operated and ischemia-reperfusion groups. We discovered that ischemia-reperfusion injury-induced alterations in 338 lipid molecules, which potentially caused lipid droplet formation and mitochondrial damage. Notably, we identified characteristic changes in various lipids, including cholesterol esters, cardiolipin, and ceramide, which may serve as potential biomarkers for assessing the severity of retinal injury and therapeutic interventions. The ischemia-reperfusion-specific features identified in this study provide a more comprehensive understanding of the pathophysiological mechanisms underlying this condition.
Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
Full article