advertisement

WGA Rescources

Abstract #117040 Published in IGR 24-4

Diagnostic performance of wide-field optical coherence tomography angiography in detecting open-angle glaucoma in high myopia

Zhang Y; Wang D; Lin F; Song Y; Chen Y; Peng Y; Chen M; Liu Y; Jiang J; Yang Z; Li F; Zhang X
Acta Ophthalmologica 2024; 102: e168-e177


PURPOSE: To compare the diagnostic performance of the capillary density (CD) of the central 1-6 mm and peripheral 6-12 mm annular regions in detecting open-angle glaucoma in high myopia (HM) using 15 × 12 mm wide-field swept-source optical coherence tomography angiography (WF SS-OCTA). METHODS: The study enrolled 206 and 103 eyes with HM and highly myopic open-angle glaucoma (HM-OAG), respectively. WF SS-OCTA images centred on the fovea were obtained to analyse the changes in the CD in the 1-3 mm, 3-6 mm, 6-9 mm, and 9-12 mm annular regions. CD of the superficial capillary plexus (SCP) was measured with the built-in software. The area under the receiver operating characteristic curve (AUROC) of each region was compared. RESULTS: The diagnostic performance of the SCP CD in the central 1-6 mm annular region (AUROC = 0.849) was better than that in the peripheral 6-12 mm annular region (AUROC = 0.756, p = 0.001). The annular AUROCs of SCP CD peaked in the 3-6 mm annular region (AUROC = 0.858) and gradually decreased with increasing diameter and were lower than the corresponding AUROCs of the ganglion cell-inner plexiform layer thickness (p < 0.05 for all comparisons). SCP CD of the inferior quadrant in the 3-6 mm annular region had the best diagnostic performance (AUROC = 0.859). CONCLUSION: The SCP CD in the central 1-6 mm annular region exhibited better diagnostic performance for the detection of HM-OAG in HM. The assessment of more peripheral regions has no added value in detecting glaucoma in HM.

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Full article

Classification:

15 Miscellaneous



Issue 24-4

Change Issue


advertisement

Nidek