advertisement

WGA Rescources

Abstract #117474 Published in IGR 24-4

Using Fused Data from Perimetry and Optical Coherence Tomography to Improve the Detection of Visual Field Progression in Glaucoma

Li-Han LY; Eizenman M; Shi RB; Buys YM; Trope GE; Wong W
Bioengineering (Basel, Switzerland) 2024; 11:


Perimetry and optical coherence tomography (OCT) are both used to monitor glaucoma progression. However, combining these modalities can be a challenge due to differences in data types. To overcome this, we have developed an autoencoder data fusion (AEDF) model to learn compact encoding (AE-fused data) from both perimetry and OCT. The AEDF model, optimized specifically for visual field (VF) progression detection, incorporates an encoding loss to ensure the interpretation of the AE-fused data is similar to VF data while capturing key features from OCT measurements. For model training and evaluation, our study included 2504 longitudinal VF and OCT tests from 140 glaucoma patients. VF progression was determined from linear regression slopes of longitudinal mean deviations. Progression detection with AE-fused data was compared to VF-only data (standard clinical method) as well as data from a Bayesian linear regression (BLR) model. In the initial 2-year follow-up period, AE-fused data achieved a detection F1 score of 0.60 (95% CI: 0.57 to 0.62), significantly outperforming ( < 0.001) the clinical method (0.45, 95% CI: 0.43 to 0.47) and the BLR model (0.48, 95% CI: 0.45 to 0.51). The capacity of the AEDF model to generate clinically interpretable fused data that improves VF progression detection makes it a promising data integration tool in glaucoma management.

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada.

Full article

Classification:

15 Miscellaneous



Issue 24-4

Change Issue


advertisement

Nidek