advertisement
PURPOSE: To compare the effectiveness of Humphrey Matrix perimetry, GDx VCC, Stratus OCT, and retinal nerve fiber layer (RNFL) photography using the Heidelberg Retina Angiograph 1 (HRA1) for early glaucoma detection. DESIGN: Cross-sectional comparative study. PARTICIPANTS: Seventy-two primary open-angle glaucoma patients with early-stage visual field defects and 48 healthy controls were included. METHODS: Measurements using Humphrey Matrix perimetry, GDx VCC, Stratus OCT, and RNFL photography using HRA1, as well as standard automated perimetry, were obtained. We constructed receiver operating characteristic (ROC) curves for all available parameters and calculated the area under the ROC curves (AUC) to seek the best discriminating parameter of each test. Subsequently, the ROC curves were calculated for the combinations of the best discriminating parameters of each test to seek the most effective combination for early glaucoma detection. MAIN OUTCOME MEASURE: The AUC for various parameters of Humphrey Matrix perimetry, GDx VCC, Stratus OCT, and RNFL photography using HRA1. RESULTS: The AUCs of Humphrey Matrix perimetry, GDx VCC, Stratus OCT, and RNFL photography using HRA1 with the best discriminating parameter were 0.990, 0.906, 0.794, and 0.751, respectively. The AUC of the following best combination was 0.972, more than 5 points depressed below the level of 5% on the pattern deviation plot from Humphrey Matrix perimetry, and the nerve fiber indicator was larger than 20 from GDx VCC. CONCLUSIONS: The AUC of the Humphrey Matrix perimetry was greater than that of the GDx VCC, Stratus OCT, and RNFL photography using HRA1.
Dr. S. Hong, Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
6.6.3 Special methods (e.g. color, contrast, SWAP etc.) (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.9.1.2 Confocal Scanning Laser Polarimetry (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.9.1.1 Confocal Scanning Laser Ophthalmoscopy (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)