advertisement

WGA Rescources

Abstract #19272 Published in IGR 9-3

Bayesian confidence propagation neural network

Bate A
Drug Safety 2007; 30: 623-625


A Bayesian confidence propagation neural network (BCPNN)-based technique has been in routine use for data mining the 3 million suspected adverse drug reactions (ADRs) in the WHO database of suspected ADRs of as part of the signal-detection process since 1998. Data mining is used to enhance the early detection of previously unknown possible drug-ADR relationships, by highlighting combinations that stand out quantitatively for clinical review. Now-established signals prospectively detected from routine data mining include topiramate associated glaucoma, and the SSRIs with neonatal withdrawal syndrome. Recent advances in the method and its use will be discussed: (i) the recurrent neural network approach used to analyse cyclo-oxygenase 2 inhibitor data, isolating patterns for both rofecoxib and celecoxib; (ii) the use of data-mining methods to improve data quality, especially the detection of duplicate reports; and (iii) the application of BCPNN to the 2 million patient-record IMS Disease Analyzer.

Dr. A. Bate, Collaborating Centre for International Drug Monitoring, Uppsala Monitoring Centre (UMC), Stora Torget 3, Uppsala, S-753 20, Sweden. andrew.bate@who-umc.org


Classification:

9.4.20 Other (Part of: 9 Clinical forms of glaucomas > 9.4 Glaucomas associated with other ocular and systemic disorders)



Issue 9-3

Change Issue


advertisement

Oculus