advertisement

WGA Rescources

Abstract #20796 Published in IGR 10-1

Blocking LINGO-1 Function Promotes Retinal Ganglion Cell Survival Following Ocular Hypertension and Optic Nerve Transection

Fu QL; Hu B; Wu W; Pepinsky RB; Mi S; So KF
Investigative Ophthalmology and Visual Science 2008; 49: 975-985


PURPOSE: LINGO-1 is a functional member of the Nogo66 receptor (NgR1)/p75 and NgR1/TROY signaling complexes that prevent axonal regeneration through RhoA in the central nervous system. LINGO-1 also promotes cell death after neuronal injury and spinal cord injury. The authors sought to examine whether blocking LINGO-1 function with LINGO-1 antagonists promotes retinal ganglion cell (RGC) survival after ocular hypertension and optic nerve transection. METHODS: An experimental ocular hypertension model was induced in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. LINGO-1 expression in the retinas was investigated using immunohistochemistry and Western blotting. Soluble LINGO-1 protein (LINGO-1-Fc) and anti-LINGO-1 mAb 1A7 were injected into the vitreous body to examine their effects on RGC survival after ocular hypertension and optic nerve transection. Signal transduction pathways mediating neuroprotective LINGO-1-Fc effects were characterized using Western blotting and specific kinase inhibitors. RESULTS: LINGO-1 was expressed in RGCs and up-regulated after intraocular pressure elevation. Blocking LINGO-1 function with LINGO-1 antagonists, LINGO-1-Fc and 1A7 significantly reduced RGC loss 2 and 4 weeks after ocular hypertension and also promoted RGC survival after optic nerve transection. LINGO-1-Fc treatment blocked the RhoA, JNK pathway and promoted Akt activation. LINGO-1-Fc induced Akt phosphorylation, and the survival effect of LINGO-1 antagonists was abolished by Akt phosphorylation inhibitor. CONCLUSIONS: The authors demonstrated that blocking LINGO-1 function with LINGO-1 antagonists rescues RGCs from cell death after ocular hypertension and optic nerve transection. They also delineated the RhoA and PI-3K/Akt pathways as the predominant mediator of LINGO-1-Fc neuroprotection in this paradigm of RGC death.


Classification:

5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.8 Pharmacology (Part of: 3 Laboratory methods)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 10-1

Change Issue


advertisement

Topcon