advertisement
Aquaporins have multiple distinct roles in mammalian physiology. Phenotype analysis of aquaporin-knockout mice has confirmed the predicted role of aquaporins in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Aquaporins also facilitate water movement into and out of the brain in various pathologies such as stroke, tumour, infection and hydrocephalus. A major, unexpected cellular role of aquaporins was revealed by analysis of knockout mice: aquaporins facilitate cell migration, as occurs in angiogenesis, tumour metastasis, wound healing, and glial scar formation. Another unexpected role of aquaporins is in neural function - in sensory signalling and seizure activity. The water-transporting function of aquaporins is likely responsible for these roles. A subset of aquaporins that transport both water and glycerol, the 'aquaglyceroporins', regulate glycerol content in epidermal, fat and other tissues. Mice lacking various aquaglyceroporins have several interesting phenotypes, including dry skin, resistance to skin carcinogenesis, impaired cell proliferation, and altered fat metabolism. The various roles of aquaporins might be exploited clinically by development of drugs to alter aquaporin expression or function, which could serve as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer.
Dr. A.S. Verkman, Department of Medicine, Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA. Alan.verkman@ucsf.edu
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
2.6 Aqueous humor dynamics (Part of: 2 Anatomical structures in glaucoma)