advertisement

Topcon

Abstract #22624 Published in IGR 11-1

Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina

Ju WK; Kim KY; Angert M; Duong-Polk KX; Lindsey JD; Ellisman MH; Weinreb RN
Investigative Ophthalmology and Visual Science 2009; 50: 707-716


PURPOSE: To determine whether intraocular pressure (IOP) elevation alters OPA1 expression and triggers OPA1 release, as well as whether the uncompetitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist memantine blocks OPA1 release and subsequent apoptotic cell death in glaucomatous DBA/2J mouse retina. METHODS: Preglaucomatous DBA/2J mice received memantine (5 mg/kg, intraperitoneal injection, twice daily for 3 months) and IOP in the eyes was measured monthly. RGC loss was counted after FluoroGold labeling. OPA1, Dnm1, Bcl-2, and Bax mRNA were measured by qPCR. OPA1 protein was assessed by immunohistochemistry and Western blot. Apoptotic cell death was assessed by TUNEL staining. RESULTS: Memantine treatment significantly increased RGC survival in glaucomatous DBA/2J mice and increased the 75-kDa OPA1 isoform, but did not alter the 80- and 90-kDa isoforms. The isoforms of OPA1 were significantly increased in the cytosol of the vehicle-treated glaucomatous retinas but were significantly decreased in memantine-treated glaucomatous retinas. OPA1 immunoreactivity was decreased in the photoreceptors of both vehicle- and memantine-treated glaucomatous retinas, but was increased in the outer plexiform layer of only the memantine-treated glaucomatous retinas. Memantine blocked apoptotic cell death in the GCL, increased Bcl-2 gene expression, and decreased Bax gene expression. CONCLUSIONS: OPA1 release from mitochondria in glaucomatous mouse retina is inhibited by blockade of glutamate receptor activation. Because this OPA1 effect was accompanied by increased Bcl-2 expression, decreased Bax expression, and apoptosis blockade, glutamate receptor activation in the glaucomatous retina may involve a distinct mitochondria-mediated cell death pathway.

Dr. W.K. Ju, Hamilton Glaucoma Center, University of California San Diego, La Jolla, California 92037, USA. danielju@glaucoma.ucsd.edu


Classification:

5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
11.8 Neuroprotection (Part of: 11 Medical treatment)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)



Issue 11-1

Change Issue


advertisement

Topcon