advertisement
The feasibility of low energy processing in ocular tissues with femtosecond laser sources was investigated in this research. One laser source was a femtosecond amplifier, and the other was a femtosecond oscillator. The amplifier used in this experiment was a CPA-2001 (Clark-MXR, Inc), with 150 fs pulse duration and 1 kHz repetition rate. The femtosecond oscillator (model 900-B Mira) produced a 200 fs pulse duration and a 76 MHz repetition rate. Both these two laser systems operated at 800 nm wavelengths. Firstly, the pulse intensity thresholds in water produced by the two laser sources were compared. The optical breakdown probability analysis shows that the pulse energy threshold achieved by the oscillator was less than 10% of that achieved by the amplifier. Then, the non-linear propagation of the femtosecond pulses in the ocular tissues was studied with the femtosecond oscillator. The results showed a potential for pulse energy processing at the nanojoule level with a femtosecond oscillator in glaucoma treatment.
Dr. D.X. Hou, Precision Engineering and Nanotechnology Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore. dongxia@pmail.ntu.edu.sg
12.4 Laser trabeculoplasty and other laser treatment of the angle (Part of: 12 Surgical treatment)