advertisement

Topcon

Abstract #25136 Published in IGR 12-1

Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography A Study on Diagnostic Agreement with Heidelberg Retinal Tomograph

Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS
Ophthalmology 2010; 117: 267-274


OBJECTIVE: To evaluate and compare the diagnostic agreement and performance for glaucoma detection between a confocal scanning laser ophthalmoscope and a spectral-domain optical coherence tomograph (OCT). DESIGN: Prospective, cross-sectional study. PARTICIPANTS: One hundred fifty-five subjects (79 glaucoma and 76 normal subjects). METHODS: One eye from each individual was selected randomly for optic disc and retinal nerve fiber layer (RNFL) imaging by the Heidelberg Retinal Tomograph (HRT; Heidelberg Engineering, GmbH, Dossenheim, Germany) and the Spectralis OCT (Heidelberg Engineering), respectively. Glaucoma was defined based on the presence of visual field defects with the Humphrey visual field analyzer (Carl Zeiss Meditec, Dublin, CA). The agreement of the categorical classification ("within normal limits," "borderline," and "outside normal limits") at the temporal, superotemporal, superonasal, nasal, inferonasal and inferotemporal sectors of the optic disc were evaluated (kappa statistics).The diagnostic sensitivity and specificity between optic disc and RNFL assessment were compared (McNemar's statistics). Area under the receiver operating characteristic curve (AUC) of OCT RNFL and HRT optic disc parameters were computed after adjustment of age, axial length, and optic disc area. MAIN OUTCOME MEASURES: Agreement of categorical classification, AUC of optic disc, and RNFL parameters. RESULTS: The agreement of categorical classification between HRT and Spectralis OCT were fair to moderate (kappa ranged between 0.30 and 0.53) except for global (kappa = 0.63) and inferotemporal (kappa = 0.68) measurements. Defining glaucoma as having "outside normal limits" in the global and/or in >/=1 of the sectoral measurements, the respective sensitivities of Spectralis OCT and HRT were 91.1% and 79.8% (P = 0.012) at a similar level of specificity (97.4% and 94.7%). The AUC of OCT global RNFL thickness (0.978) was greater than those of HRT global rim area (0.905), vertical cup-disc ratio (0.857), rim-disc area ratio (0.897), and multivariate discriminant analysis (0.880-0.925; all with P

Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.


Classification:

6.9.1.1 Confocal Scanning Laser Ophthalmoscopy (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)



Issue 12-1

Change Issue


advertisement

Oculus