advertisement
Glaucoma is characterised by the preferential death of retinal ganglion cells (RGCs). However, mammalian models indicate that neurons pass through a period in which they manifest signs of neuronal damage, but have yet to fully commit to death. Mounting evidence suggests that one of the clearest indications of this process is the reduction in RGC dendritic arborisation, resulting in functional compromise. The extent to which this may be reversible is unclear, since the molecular events that precede changes in dendritic structure have received little attention. Furthermore, there are likely to be many factors involved in this process potentially acting in different individual cells at different times. Recent work in Drosophila shows that dendritic reorganisation/remodelling involves local activation and tight regulation of caspase activity. Here, we propose a model in which the balance between caspases and inhibitors of apoptosis (IAPs) contributes towards the regulation of dendritic remodelling. Thus, RGC dendrite reorganisation and cell death represent opposite ends of a spectrum of events regulated by apoptosis signalling pathways. We summarise relevant events in apoptosis, focusing on caspases and IAPs. We also discuss mechanisms of dendrite development, structure and reorganisation and the implications for early diagnosis and treatment of glaucoma and neurodegenerative disease.
Visual Neuroscience and Molecular Biology Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
11.8 Neuroprotection (Part of: 11 Medical treatment)