advertisement
See also comment(s) by Terete Borras •
PURPOSE: Mice in which bestrophin 2 (Best2) is disrupted exhibit changes in aqueous flow and drainage, resulting in a reduction in intraocular pressure in comparison to wild-type mice. Best2 encodes a putative anion channel localized uniquely to the basolateral plasma membrane of non-pigmented epithelium cells in mice. In this study, we examine the localization of Best2 in the human eye. METHODS: Rabbit polyclonal antibodies recognizing human Best2 (hBest2) were generated and characterized for use in western blot, immunoprecipitation, and immunofluorescence assays. The expression of hBest2 using these antibodies was examined using human donor eye tissues. RESULTS: We could not detect hBest2 in human ciliary bodies or other ocular tissues by western blot. However, when enriched by immunoprecipitation, hBest2 was identified in ciliary bodies, but not in the retinal pigment epithelium. Using immunofluorescence, we located hBest2 in the basolateral plasma membrane of non-pigmented epithelial cells. CONCLUSIONS: We found expression of hBest2 similar to mice only in NPE cells. These data suggest that Best2 may play a functional role in the regulation of aqueous flow and drainage in humans. We conclude that Best2 represents a new potential target for glaucoma therapy.
Y. Zhang. Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ 85724, USA.
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
2.9 Ciliary body (Part of: 2 Anatomical structures in glaucoma)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)