advertisement

Topcon

Abstract #45637 Published in IGR 13-2

A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment

Strohmaier C; Werkmeister RM; Bogner B; Runge C; Schroedl F; Brandtner H; Radner W; Schmetterer L; Kiel JW; Grabner G
Experimental Eye Research 2011; 92: 545-551

See also comment(s) by Alon Harris


Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x

H.A. Reitsamer. Department of Ophthalmology and Optometry, Paracelsus Medical University, Mullner Haupstrasse 48, Salzburg 5020, Austria. Email: h.reitsamer@salk.at


Classification:

6.11 Bloodflow measurements (Part of: 6 Clinical examination methods)



Issue 13-2

Change Issue


advertisement

Oculus