advertisement

Topcon

Abstract #46435 Published in IGR 13-3

Biomechanical Changes in the Sclera of Monkey Eyes Exposed to Chronic IOP Elevations

Girard MJ; Suh JK; Bottlang M; Burgoyne CF; Downs JC
Investigative Ophthalmology and Visual Science 2011; 52: 5656-5669

See also comment(s) by Jonathan Vande Geest


PURPOSE: To characterize scleral biomechanics in both eyes of eight monkeys in which chronic intraocular pressure (IOP) elevation was induced in one eye. METHODS: Each posterior sclera was mounted on a pressurization apparatus, IOP was elevated from 5 to 45 mm Hg while the 3D displacements of the scleral surface were measured by speckle interferometry. Finite element (FE) models of each scleral shell were constructed that incorporated stretch-induced stiffening and multidirectionality of the collagen fibers. FE model predictions were then iteratively matched to experimental displacements to extract unique sets of scleral biomechanical properties. RESULTS: For all eyes, the posterior sclera exhibited inhomogeneous, anisotropic, nonlinear biomechanical behavior. Biomechanical changes caused by chronic IOP elevation were complex and specific to each subject. Specifically: (1) Glaucomatous eyes in which the contralateral normal eyes displayed large modulus or thickness were less prone to biomechanical changes; (2) glaucomatous scleral modulus associated with an IOP of 10 mm Hg decreased (when compared with that of the contralateral normal) after minimal chronic IOP elevation; (3) glaucomatous scleral modulus associated with IOPs of 30 and 45 mm Hg increased (when compared with that of the contralateral normal) after moderate IOP elevation; and (4) FE-based estimates of collagen fiber orientation demonstrated no change in the glaucomatous eyes. CONCLUSIONS: Significant stiffening of the sclera follows exposure to moderate IOP elevations in most eyes. Scleral hypercompliance may precede stiffening or be a unique response to minimal chronic IOP elevation in some eyes. These biomechanical changes are likely to be the result of scleral extracellular matrix remodeling.


Classification:

2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)
5.2 Primates (Part of: 5 Experimental glaucoma; animal models)



Issue 13-3

Change Issue


advertisement

Oculus