advertisement
A novel glaucoma drainage device (GDD) using a polymeric micro check valve with no reverse flow is presented for the effective regulation of intraocular pressure (IOP). A significant functional improvement was achieved by reducing the possible incidence of hypotony, as the proposed GDD only drains aqueous humor at a certain cracking pressure or higher. The device consists of three biocompatible polymer layers: a top layer (cover), an intermediate layer (membrane), and a bottom layer (base plate with a cannula). All three layers, made of soft polydimethylsiloxane (PDMS), were bonded together to realize the thin GDDs. The bottom layer was selectively coated with chromium (Cr)/gold (Au) to prevent stiction between the valve seat and the valve orifice so that the device could show enhanced reliability in operation and high yield in production. Two types of polymeric devices were fabricated; one was a glaucoma drainage device for humans (GDDH) and the other was a glaucoma drainage device for animals (GDDA). From subsequent in vitro tests, the cracking pressures were 18.33 (plus or minus) 0.66 mmHg (mean (plus or minus) standard deviation) for GDDH and 12.42 mmHg for GDDA, both of which were very close to the corresponding normal IOPs. From in vivo tests of GDDA, the IOP of all implanted devices was properly regulated within the target pressure (10-15 mmHg). The experimental results showed that the proposed polymeric GDD has high potential for use in the treatment of glaucoma disease in terms of its repeatability of the cracking pressure and patients' relief from post-operative discomfort. (copyright) 2011 Springer Science+Business Media, LLC.
J.-H. Lee. School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, South Korea. Email: jonghyun@gist.ac.kr
12.8.2 With tube implant or other drainage devices (Part of: 12 Surgical treatment > 12.8 Filtering surgery)