advertisement
Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Glaucoma is one of the most common causes of blindness. The manual examination of optic disk (OD) is a standard procedure used for detecting glaucoma. In this paper, we present an automatic OD parameterization technique based on segmented OD and cup regions obtained from monocular retinal images. A novel OD segmentation method is proposed which integrates the local image information around each point of interest in multidimensional feature space to provide robustness against variations found in and around the OD region. We also propose a novel cup segmentation method which is based on anatomical evidence such as vessel bends at the cup boundary, considered relevant by glaucoma experts. Bends in a vessel are robustly detected using a region of support concept, which automatically selects the right scale for analysis. A multi-stage strategy is employed to derive a reliable subset of vessel bends called r-bends followed by a local spline fitting to derive the desired cup boundary. The method has been evaluated on 138 images comprising 33 normal and 105 glaucomatous images against three glaucoma experts. The obtained segmentation results show consistency in handling various geometric and photometric variations found across the dataset. The estimation error of the method for vertical cup-to-disk diameter ratio is 0.09/0.08 (mean/standard deviation) while for cup-to-disk area ratio it is 0.12/0.10. Overall, the obtained qualitative and quantitative results show effectiveness in both segmentation and subsequent OD parameterization for glaucoma assessment.
G.D. Joshi. Centre for Visual Information Technology, IIIT Hyderabad, Hyderabad, India. Email: gopal@research.iiit.ac.in
6.9.5 Other (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis)