advertisement
PURPOSE: To correlate the thicknesses of focal regions of the macular ganglion cell layer with those of the peripapillary nerve fiber layer using spectral-domain optical coherence tomography (SD-OCT) in glaucoma subjects. METHODS: Macula and optic nerve head SD-OCT volumes were obtained in 57 eyes of 57 subjects with open-angle glaucoma or glaucoma suspicion. Using a custom automated computer algorithm, the thickness of 66 macular ganglion cell layer regions and the thickness of 12 peripapillary nerve fiber layer regions were measured from registered SD-OCT volumes. The mean thickness of each ganglion cell layer region was correlated to the mean thickness of each peripapillary nerve fiber layer region across subjects. Each ganglion cell layer region was labeled with the peripapillary nerve fiber layer region with the highest correlation using a color-coded map. RESULTS: The resulting color-coded correlation map closely resembled the nerve fiber bundle (NFB) pattern of retinal ganglion cells. The mean r(2) value across all local macular-peripapillary correlations was 0.49 (± 0.11). When separately analyzing the 30 glaucoma subjects from the 27 glaucoma-suspect subjects, the mean r(2) value across all local macular-peripapillary correlations was significantly larger in the glaucoma group (0.56 ± 0.13 vs. 0.37 ± 0.11; P < 0.001). CONCLUSIONS: A two-dimensional (2-D) spatial NFB map of the retina can be developed using structure-structure relationships from SD-OCT. Such SD-OCT-based NFB maps may enhance glaucoma detection and contribute to monitoring change in the future.
Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, USA. mona-garvin@uiowa.edu
Full article6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)