advertisement

Topcon

Abstract #50204 Published in IGR 14-2

Localized Glaucomatous Change Detection within the Proper Orthogonal Decomposition Framework

Balasubramanian M; Kriegman DJ; Bowd C; Holst M; Weinreb RN; Sample PA; Zangwill LM
Investigative Ophthalmology and Visual Science 2012; 53: 3615-3628


PURPOSE: To detect localized glaucomatous structural changes using proper orthogonal decomposition (POD) framework with false-positive control that minimizes confirmatory follow-ups, and to compare the results to topographic change analysis (TCA). METHODS: We included 167 participants (246 eyes) with ≥4 Heidelberg Retina Tomograph (HRT)-II exams from the Diagnostic Innovations in Glaucoma Study; 36 eyes progressed by stereo-photographs or visual fields. All other patient eyes (n = 210) were non-progressing. Specificities were evaluated using 21 normal eyes. Significance of change at each HRT superpixel between each follow-up and its nearest baseline (obtained using POD) was estimated using mixed-effects ANOVA. Locations with significant reduction in retinal height (red pixels) were determined using Bonferroni, Lehmann-Romano k-family-wise error rate (k-FWER), and Benjamini-Hochberg false discovery rate (FDR) type I error control procedures. Observed positive rate (OPR) in each follow-up was calculated as a ratio of number of red pixels within disk to disk size. Progression by POD was defined as one or more follow-ups with OPR greater than the anticipated false-positive rate. TCA was evaluated using the recently proposed liberal, moderate, and conservative progression criteria. RESULTS: Sensitivity in progressors, specificity in normals, and specificity in non-progressors, respectively, were POD-Bonferroni = 100%, 0%, and 0%; POD k-FWER = 78%, 86%, and 43%; POD-FDR = 78%, 86%, and 43%; POD k-FWER with retinal height change ≥50 μm = 61%, 95%, and 60%; TCA-liberal = 86%, 62%, and 21%; TCA-moderate = 53%, 100%, and 70%; and TCA-conservative = 17%, 100%, and 84%. CONCLUSIONS: With a stronger control of type I errors, k-FWER in POD framework minimized confirmatory follow-ups while providing diagnostic accuracy comparable to TCA. Thus, POD with k-FWER shows promise to reduce the number of confirmatory follow-ups required for clinical care and studies evaluating new glaucoma treatments. (ClinicalTrials.gov number, NCT00221897.).

the.

Full article

Classification:

6.9.1.1 Confocal Scanning Laser Ophthalmoscopy (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)
6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.8.2 Posterior segment (Part of: 6 Clinical examination methods > 6.8 Photography)
6.20 Progression (Part of: 6 Clinical examination methods)



Issue 14-2

Change Issue


advertisement

Oculus