advertisement
PURPOSE: To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. METHODS: One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. RESULTS: Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P<0.0001) coefficients of determination (R) were found for all 16 RNFLT sectors. The R values were highest for the temporal, superotemporal, and inferotemporal RNFLT sectors (0.4483 to 0.5186). For GDx-VCC/ECC, significant (P<0.01) parabolic relationship was seen for all but the temporal and nasal RNFLT sectors. The overall highest R value (0.6943) was found for a superotemporal RNFLT sector with GDx-ECC. For some RNFLT sectors, the goodness of fit differed significantly between the imaging methods. Structure-function relationship was similar for the total population and the glaucoma subgroup, whereas no relationship (P>0.05) was found for the control eyes. CONCLUSIONS: Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.
*Department of Ophthalmology †Cardiovascular Center, Semmelweis University, Budapest, Hungary.
Full article6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)
6.9.1.2 Confocal Scanning Laser Polarimetry (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)