advertisement
PURPOSE: To assess Pulsar Perimetry learning effect and test-retest variability (TRV) in normal (NORM), ocular hypertension (OHT), glaucomatous optic neuropathy (GON), and primary open-angle glaucoma (POAG) eyes. METHODS: This multicenter prospective study included 43 NORM, 38 OHT, 33 GON, and 36 POAG patients. All patients underwent standard automated perimetry and Pulsar Contrast Perimetry using white stimuli modulated in phase and counterphase at 30 Hz (CP-T30W test). The learning effect and TRV for Pulsar Perimetry were assessed for 3 consecutive visual fields (VFs). The learning effect were evaluated by comparing results from the first session with the other 2. TRV was assessed by calculating the mean of the differences (in absolute value) between retests for each combination of single tests. TRV was calculated for Mean Sensitivity, Mean Defect, and single Mean Sensitivity for each 66 test locations. Influence of age, VF eccentricity, and loss severity on TRV were assessed using linear regression analysis and analysis of variance. RESULTS: The learning effect was not significant in any group (analysis of variance, P>0.05). TRV for Mean Sensitivity and Mean Defect was significantly lower in NORM and OHT (0.6 ± 0.5 spatial resolution contrast units) than in GON and POAG (0.9 ± 0.5 and 1.0 ± 0.8 spatial resolution contrast units, respectively) (Kruskal-Wallis test, P=0.04); however, the differences in NORM among age groups was not significant (Kruskal-Wallis test, P>0.05). Slight significant differences were found for the single Mean Sensitivity TRV among single locations (Duncan test, P<0.05). For POAG, TRV significantly increased with decreasing Mean Sensitivity and increasing Mean Defect (linear regression analysis, P<0.01). CONCLUSIONS: The Pulsar Perimetry CP-T30W test did not show significant learning effect in patients with standard automated perimetry experience. TRV for global indices was generally low, and was not related to patient age; it was only slightly affected by VF defect eccentricity, and significantly influenced by VF loss severity.
Department of Ophthalmology, Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Udine, Italy.
Full article6.6.3 Special methods (e.g. color, contrast, SWAP etc.) (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)