advertisement

Topcon

Abstract #54553 Published in IGR 15-3

Effect of CLC-2 on the cytoskeleton in human trabecular meshwork cells

Wang HW; Zheng YJ
Molecular medicine reports 2013; 8: 1099-1105


The chloride channel protein 2 (CLC‑2) is important in maintaining the volume of trabecular meshwork cells by adjusting the outflow of aqueous solutions and maintaining the fluid balance. However, little is known concerning the functions of CLC‑2 in the cytoskeleton, specifically in human trabecular meshwork (HTM) cells. In the present study, two CLC-2 specific siRNAs (siRNA1 and siRNA2) that target CLC-2 mRNA were designed. The siRNAs were transfected into the HTM cells and the results showed that siRNA1 in particular decreased the expression of CLC‑2 by ~45%. Furthermore, an siRNA1‑mediated CLC-2 knockdown significantly reconstructed the actin cytoskeleton and formed cross‑linked actin networks. In addition, the downregulation of the expression of CLC‑2 was associated with increased TGF‑β and Smad2 activities in the HTM cells following 24 h of transfection. In conclusion, these results suggest that CLC‑2 knockdown promotes trabecular meshwork cytoskeletal disorders and may activate the TGF‑β/Smad signaling pathway. Thus, CLC‑2 may be a promising and potential novel therapeutic strategy for combating primary open‑angle glaucoma.

Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China.

Full article

Classification:

2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)



Issue 15-3

Change Issue


advertisement

Oculus