advertisement
The retinal ischemia-reperfusion injury (RIR) is a common pathological process that leads to progressive visual loss and blindness in many retinal diseases such as retinal vascular occlusion disease, diabetic retinopathy, and acute glaucoma. Currently, there has been no effective therapy. The purpose of this study was to investigate the effects of transplantation of retinal progenitor cells (RPCs) into the subretinal space (SRS) and the superior colliculus (SC) in a rat model of RIR injury. We used cultured postnatal day 1 rat RPCs transfected with adeno-associated virus containing the cDNA encoding enhanced green fluorescence protein (EGFP) for transplantation. RIR injury was induced by increases in the intraocular pressure to 110mmHg for 60min. The effects of transplantation were evaluated by immunohistochemistry, electroretinography (ERG), and visual evoked potentials (VEP). We found that in rats with RIR injury, RPCs transplanted into the SRS and the SC survived for at least 8 weeks, migrated into surrounding tissues, and improved the ERG and VEP responses. Cells transplanted into the SC improved the VEP response more than those transplanted into the SRS. Our data suggest that transplantation of RPCs into the SRS and the SC may be a possible method for cell replacement therapy for retinal diseases.
Department of Ophthalmology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China. Electronic address: lixueying5241@stu.xjtu.edu.cn.
Full article5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
2.17 Stem cells (Part of: 2 Anatomical structures in glaucoma)