advertisement
PURPOSE: We have previously demonstrated elevated levels of connective tissue growth factor (CTGF/CCN2) in the aqueous humor (AqH) of pseudoexfoliation glaucoma (PXFG) patients when compared with cataract controls. Furthermore, there is a significant trabecular meshwork (TM) and lamina cribrosa (LC) fibrotic phenotype associated with glaucoma, possibly driven by CTGF. The purpose of this study was to investigate the potential of anti-CTGF immunotherapy in glaucoma. METHODS: Primary TM and LC cells were cultured from human donors with (GTM/GLC) and without (NTM/NLC) primary open angle glaucoma (POAG). Aqueous humor samples from PXFG, POAG, and control cataract patients were applied to N/GTM and N/GLC cells in the presence or absence of a therapeutic, humanized monoclonal anti-CTGF antibody FG-3019 (10 μg/mL). Hydrogen peroxide (H2O2) was also used as a stimulus. Expression of fibrotic genes (fibronectin-1, fibrillin-1, CTGF, collagen type I α1, and α-smooth muscle actin) was assessed by q-PCR. Protein expression of collagen 1A1 and α-smooth muscle actin was examined in N/G TM cells by SDS-PAGE. The modulatory effect of FG-3019 (10 μg/mL) and IgG (10 μg/mL) were also assessed. RESULTS: Treatment of cells with AqH from PXFG and POAG patients and H2O2 induced a significant (P < 0.05) increase in expression of profibrotic genes, which was significantly reduced by pretreatment with FG-3019 (P < 0.05). FG-3019 also reduced expression of α-smooth muscle actin and collagen 1A1 protein expression in N/GTM cells. CONCLUSIONS: FG-3019 is effective in blocking extracellular matrix production in TM and LC cells, thus supporting a role for the use of anti-CTGF immunotherapy in the treatment of glaucoma.
Full article
2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
11.14 Investigational drugs; pharmacological experiments (Part of: 11 Medical treatment)