advertisement

Topcon

Abstract #55581 Published in IGR 15-4

Lipid peroxidation: pathophysiological and pharmacological implications in the eye

Njie-Mbye YF; Kulkarni-Chitnis M; Opere CA; Barrett A; Ohia SE
Frontiers in physiology 2013; 4: 366


Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [(3)H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina and can regulate amino acid neurotransmitter metabolism without inducing cell death in the retina. Furthermore, there appears to be an inhibitory role for neuroprostanes in the release of excitatory amino acid neurotransmitters in mammalian retina. The ability of peroxides and metabolites of LCPUFA to alter the integrity of neurotransmitter pools provides new potential target sites and pathways for the treatment of degenerative ocular diseases.

Full article

Classification:

3.9 Pathophysiology (Part of: 3 Laboratory methods)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 15-4

Change Issue


advertisement

Oculus