advertisement
PURPOSE: To use swept-source optical coherence tomography (OCT) to image the posterior sclera at the posterior pole and around the optic nerve head (ONH) and measure the subfoveal scleral thickness and laminar thickness to evaluate the relationship between the measured thicknesses and ocular parameters. DESIGN: Prospective, cross-sectional design. METHODS: The study included 103 patients with glaucoma and 43 controls with axial lengths more than 26 mm. Swept-source OCT images were obtained to capture the subfoveal and ONH regions. Subfoveal scleral thickness and laminar thickness were measured from obtained B-scan images. To verify the reproducibility of the measurement, intraclass correlation coefficients were calculated from selected B-scans. Scleral and laminar thicknesses in patients with normal-tension glaucoma (NTG) was compared with that in patients with primary open-angle glaucoma (POAG). A Pearson correlation was calculated to assess the relationships of scleral and laminar thicknesses with ocular parameters. RESULTS: Posterior scleral thickness could be measured in 68.4% of patients, and laminar thickness could be measured in 88.6% by using swept-source OCT. Interobserver and intraobserver measurement reproducibility was moderate to excellent. The subfoveal scleral thickness was 670.84 ± 160.60 μm in the POAG group and 496.55 ± 115.20 μm in the NTG group; a significant difference between the groups was observed. Subfoveal scleral thickness (r = -0.677, P < 0.001) was negatively correlated with axial length only in patients with NTG, not in patients with POAG. CONCLUSIONS: Swept-source OCT detected differences in the thicknesses of the posterior sclera between eyes with NTG and eyes with POAG. Subfoveal scleral thickness was negatively correlated with axial length only in eyes with NTG.
Full article
2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)
2.14 Optic disc (Part of: 2 Anatomical structures in glaucoma)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)