advertisement

WGA Rescources

Abstract #56220 Published in IGR 16-1

Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model

Alasil T; Wang K; Yu F; Field MG; Lee H; Baniasadi N; de Boer JF; Coleman AL; Chen TC
American Journal of Ophthalmology 2014; 157: 953-959


PURPOSE: To determine the retinal nerve fiber layer (RNFL) thickness at which visual field (VF) damage becomes detectable and associated with structural loss. DESIGN: Retrospective cross-sectional study. METHODS: Eighty-seven healthy and 108 glaucoma subjects (1 eye per subject) were recruited from an academic institution. All patients had VF examinations (Swedish Interactive Threshold Algorithm 24-2 test of the Humphrey Visual Field Analyzer 750i) and spectral-domain optical coherence tomography RNFL scans. Comparison of RNFL thickness values with VF threshold values showed a plateau of VF threshold values at high RNFL thickness values and then a sharp decrease at lower RNFL thickness values. A broken stick statistical analysis was used to estimate the tipping point at which RNFL thickness values are associated with VF defects. The slope for the association between structure and function was computed for data above and below the tipping point. RESULTS: The mean RNFL thickness value that was associated with initial VF loss was 89 μm. The superior RNFL thickness value that was associated with initial corresponding inferior VF loss was 100 μm. The inferior RNFL thickness value that was associated with initial corresponding superior VF loss was 73 μm. The differences between all the slopes above and below the aforementioned tipping points were statistically significant (P < .001). CONCLUSIONS: In open-angle glaucoma, substantial RNFL thinning or structural loss appears to be necessary before functional visual field defects become detectable.

Full article

Classification:

2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)



Issue 16-1

Change Issue


advertisement

Oculus