advertisement
Hydrogels composed of assembled colloids is a material class that is currently receiving much interest and shows great promise for use in biomedical applications. This emerging material class presents unique properties derived from the combination of nanosized domains in the form of colloidal particles with a continuous gel network and an interspersed liquid phase. Here we developed an amphiphilic chitosan-based, thermogelling, shear-reversible colloidal gel system for improved glaucoma treatment and addressed how preparation procedures and loading with the anti-glaucoma drug latanoprost and commonly used preservative benzalkonium chloride influenced the mechanical properties of and drug release from the colloidal gels. The results highlight that incorporated substances and preparation procedures have effects both on mechanical properties and drug release, but that the release of drug loaded in the colloidal carriers is mainly limited by transport out of the carriers, rather than by diffusion within the gel. The developed colloidal chitosan based gels hold outstanding biomedical potential, as confirmed by the ease of preparation and administration, low cytotoxicity in MTT assay, excellent biocompatibility and lowering of intraocular pressure for 40days in a rabbit glaucoma model. The findings clearly justify further investigations towards clinical use in the treatment of glaucoma. Furthermore, the use of this shear-reversible colloidal gel could easily be extended to localized treatment of a number of critical conditions, from chronic disorders to cancer, potentially resulting in a number of new therapeutics with improved clinical performance.
Full article
11.16 Vehicles, delivery systems, pharmacokinetics, formulation (Part of: 11 Medical treatment)
11.4 Prostaglandins (Part of: 11 Medical treatment)