advertisement

Topcon

Abstract #57419 Published in IGR 16-2

Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis

Choi A; Lao R; Ling-Fung Tang P; Wan E; Mayer W; Bardakjian T; Shaw GM; Kwok PY; Schneider A; Slavotinek A
European Journal of Human Genetics 2015; 23: 337-341


We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs-a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis-a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.European Journal of Human Genetics advance online publication, 18 June 2014; doi:10.1038/ejhg.2014.119.

Full article

Classification:

9.1.3 Syndromes of Axenfeld, Rieger, Peters, aniridia (Part of: 9 Clinical forms of glaucomas > 9.1 Developmental glaucomas)
3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)



Issue 16-2

Change Issue


advertisement

Topcon