advertisement
PURPOSE: To evaluate the relationship between the structural damage as assessed by time-domain optical coherence tomography (OCT) and functional changes in glaucoma. METHODS: In total, 190 patients with normal tension glaucoma or primary open angle glaucoma were included in this study. The thickness of retinal nerve fiber layer (RNFL) around the optic disc and the area of RNFL defect were determined using OCT scans. The relationships between the RNFL thickness or area of the defect and visual field (VF) indices were assessed using the Lowess function, regression analysis and partial Spearman correlation. The differences between these associations depending on the stage of VF damage were further analyzed. Age, optic disc size, refraction, central corneal thickness and the presence of systemic disease were corrected for in order to exclude confounding factors. RESULTS: A logarithmic scale of RNFL thickness showed a negative linear relationship with VF indices. The area of the RNFL defect showed a weak correlation with the pattern of standard deviation, whereas the remnant RNFL thickness was moderately correlated with the pattern of standard deviation (partial Spearman correlation coefficient, 0.39, -0.47, respectively; p < 0.0001). Many outliers were detected in the Lowess-plotted graphs. Multiplication of the area and the inverted RNFL thickness showed a moderately correlated logarithmic relationship with the VF indices (partial Spearman correlation coefficient, 0.46; 95% confidence interval, 0.34 to 0.57; p < 0.0001). In the severe stage of VF damage, correlation between the area of the RNFL defect and mean deviation was significantly greater than in other stages (partial Spearman correlation coefficient, -0.66; p = 0.02). CONCLUSIONS: The thickness of the RNFL had a negative logarithmic correlation with the VF indices and was more relevant to the VF indices than the area of the RNFL defect, as measured by OCT.
Department of Ophthalmology, Dongtan Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
Full article6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
2.13 Retina and retinal nerve fibre layer (Part of: 2 Anatomical structures in glaucoma)
6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)