advertisement

WGA Rescources

Abstract #60073 Published in IGR 16-4

Autophagic dysregulation in glaucomatous trabecular meshwork cells

Porter K; Hirt J; Stamer WD; Liton PB
Biochimica et Biophysica Acta 2015; 1852: 379-385


Primary open angle glaucoma (POAG) is a degenerative disease commonly associated with aging and elevated intraocular pressure (IOP). Higher resistance to aqueous humor (AH) outflow through the trabecular meshwork (TM) generates the elevated IOP in POAG; unfortunately the underlying molecular mechanisms responsible for elevated resistance are unknown. It is widely accepted, however, that differences between normal and POAG TM tissues are presumably a consequence of cellular dysfunction. Here, we investigated the autophagic function and response to chronic oxidative stress in TM cells isolated from glaucomatous and age-matched donor eyes. Glaucomatous TM cells showed elevated senescence-associated-beta-galactosidase (SA-β-Gal) and cellular lipofuscin, together with decreased steady-state levels of LC3B-II, decreased levels of pRPS6K-T389 and reduced proteolysis of long-live proteins. Moreover, the glaucomatous cultures failed to activate autophagy when exposed to hyperoxic conditions. These results strongly suggest mTOR-dependent dysregulation of the autophagic pathway in cells isolated from the glaucomatous TM. Such dysregulated autophagic capacity can have a detrimental impact in outflow pathway tissue, i.e. mechanotransduction, and thus represent an important factor contributing to the progression of the disease.

Duke University, Department of Ophthalmology, Durham, NC, USA.

Full article

Classification:

2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
3.6 Cellular biology (Part of: 3 Laboratory methods)



Issue 16-4

Change Issue


advertisement

Oculus