advertisement
PURPOSE: To compare Heidelberg Retina Tomograph (HRT) optic disc parameters and structure-function correlation between primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma (PEXG). DESIGN: Prospective, observation case series. PATIENTS AND METHODS: A total of 54 POAG and 33 PEXG cases, consecutively recruited from a University Glaucoma Service, underwent a comprehensive ophthalmic examination, including HRT optic disc imaging. Glaucoma definition required the presence of both structural and functional damage. One eye per subject was included in the analysis. T test, Mann-Whitney U test, and analysis of covariance were used to compare HRT parameters between POAG and PEXG, adjusting for age, mean deviation (MD) in the visual field, intraocular pressure, and disc area. The correlation between HRT and MD was assessed in each group. RESULTS: Cup area (P=0.048), height variation contour (P=0.016), and cup/disc area ratio (P=0.023) were higher in POAG, whereas the mean retinal nerve fiber layer thickness (P=0.048), retinal nerve fiber layer cross-section area (P=0.044), and rim area (P=0.048) were lower in POAG, compared with PEXG. The correlation of HRT parameters with MD was significant only in the POAG group. CONCLUSIONS: At a similar level of functional damage, POAG subjects presented with more pronounced structural damage than PEXG subjects. The correlation between HRT and visual field parameters was more evident in POAG, compared with PEXG.
*1st Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece †National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Full article9.4.4.1 Exfoliation syndrome (Part of: 9 Clinical forms of glaucomas > 9.4 Glaucomas associated with other ocular and systemic disorders > 9.4.4 Glaucomas associated with disorders of the lens)
6.9.1.1 Confocal Scanning Laser Ophthalmoscopy (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.1 Laser scanning)
6.6.2 Automated (Part of: 6 Clinical examination methods > 6.6 Visual field examination and other visual function tests)