advertisement
The trabecular meshwork (TM) is located in the anterior segment of the eye and is responsible for regulating the outflow of aqueous humor. Increased resistance to aqueous outflow causes intraocular pressure to increase, which is the primary risk factor for glaucoma. TM cells reside on a series of fenestrated beams and sheets through which the aqueous humor flows to exit the anterior chamber via Schlemm's canal. The outer trabecular cells are phagocytic and are thought to function as a pre-filter. However, most of the outflow resistance is thought to be from the extracellular matrix (ECM) of the juxtacanalicular region, the deepest portion of the TM, and from the inner wall basement membrane of Schlemm's canal. It is becoming increasingly evident that the extracellular milieu is important in maintaining the integrity of the TM. In glaucoma, not only have ultrastructural changes been observed in the ECM of the TM, and a significant number of mutations in ECM genes been noted, but the stiffness of glaucomatous TM appears to be greater than that of normal tissue. Additionally, TGFβ2 has been found to be elevated in the aqueous humor of glaucoma patients and is assumed to be involved in ECM changes deep with the juxtacanalicular region of the TM. This review summarizes the current literature on trabecular ECM as well as the development and function of the TM. Animal models and organ culture models targeting specific ECM molecules to investigate the mechanisms of glaucoma are described. Finally, the growing number of mutations that have been identified in ECM genes and genes that modulate ECM in humans with glaucoma are documented.
Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Full article2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.6 Cellular biology (Part of: 3 Laboratory methods)
2.6.2.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.6 Aqueous humor dynamics > 2.6.2 Outflow)