advertisement

WGA Rescources

Abstract #61564 Published in IGR 17-1

Correlation between Systemic Oxidative Stress and Intraocular Pressure Level

Tanito M; Kaidzu S; Takai Y; Ohira A
PLoS ONE 2015; 10: e0133582


BACKGROUND: The involvement of local and systemic oxidative stress in intraocular pressure (IOP) elevation and optic nerve damage has been hypothesized in the pathogenesis of glaucoma. We reported previously that the level of systemic antioxidative capacity is lower in patients with open-angle glaucoma than controls without glaucoma. Here, we assessed the correlation between IOP and systemic levels of prooxidants and antioxidants by analyzing the blood biochemistry in patients with glaucoma. METHODS: Peripheral blood samples were collected from Japanese patients with primary open-angle glaucoma (n = 206), exfoliation syndrome (n = 199), and controls (n = 126). Serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured by diacron reactive oxygen metabolite (dROM), biological antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free radical analyzer. To test the possible effect of oxidative stress on IOP levels, the patients were classified into one of four groups (Q1, Q2, Q3, and Q4, with Q1 having the lowest IOP) based on the quartile value of IOP. For this classification, the known highest IOP value in both the right and left eyes was regarded as each subject's IOP. For comparisons among the IOP groups, the differences were calculated using one-way analysis of variance followed by post-hoc unpaired t-tests. To adjust for differences in demographic characteristic distributions, the dROM, BAP, and SH test values were compared among the IOP groups using multiple logistic regression analysis; the odds ratio (OR) of each variable was calculated with the Q1 group as the reference. RESULTS: The dROM and the SH levels did not differ significantly (p = 0.6704 and p = 0.6376, respectively) among the four IOP groups. The BAP levels differed significantly (p = 0.0115) among the four IOP groups; the value was significantly lower in the Q4 group (1,932 μmol/L) compared with the Q1 (2,023 μmol/L, p = 0.0042) and Q2 (2,003 μmol/L, p = 0.0302) groups and significantly lower in the Q3 group (1,948 μmol/L) than the Q1 (p = 0.0174) group. After adjustment for differences in various demographic characteristics, lower BAP values were significantly associated with the classification into higher IOP groups (Q3 group, p = 0.0261 and OR = 0.06/range; Q4 group, p = 0.0018 and OR = 0.04/range). The dROM and SH values did not reach significance in any comparisons. CONCLUSIONS: Lower systemic antioxidant capacity measured by ferric-reducing activity is involved in the pathogenesis of open-angle glaucoma via its roles in IOP elevation.

Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Shimane, Japan; Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.

Full article

Classification:

6.1.3 Factors affecting IOP (Part of: 6 Clinical examination methods > 6.1 Intraocular pressure measurement; factors affecting IOP)
9.4.15 Glaucoma in relation to systemic disease (Part of: 9 Clinical forms of glaucomas > 9.4 Glaucomas associated with other ocular and systemic disorders)
3.9 Pathophysiology (Part of: 3 Laboratory methods)



Issue 17-1

Change Issue


advertisement

Oculus