advertisement

Topcon

Abstract #6628 Published in IGR 4-1

Alterations in arachidonic acid release and phospholipase C-β1 expression in glaucomatous human ciliary muscle cells

Husain S; Kaddour-Djebbar I; Abdel-Latif AA
Investigative Ophthalmology and Visual Science 2002; 43: 1127-1134


PURPOSE: Prostaglandin (PG) F2α and other Ca2+-mobilizing agonists, such as carbachol (CCh) and endothelin (ET)-1, induce an increase in uveoscleral outflow, in part through receptor-mediated mechanisms in the ciliary muscle. Because changes in uveoscleral outflow across the ciliary muscle could cause elevation of intraocular pressure (IOP) in patients with glaucoma, the present study was conducted to investigate the possibility that basal and agonist-induced second-messenger formation may be altered in glaucomatous human ciliary muscle (g-HCM) cells compared with normal (n)-HCM cells. METHODS: Normal and glaucomatous HCM cells were cultured from donor eyes, the cells were identified based on their positive immunostaining with smooth muscle-specific anti-α-actin (SM), anti-SM-myosin, and anti-desmin antibodies. Activation of phospholipase A2 (PLA2) was measured by the release of [3H] arachidonic acid (AA) into the medium, accumulation of PGE2 was measured by radioimmunoassay, [3H]myo-inositol phosphate production was measured by ion-exchange chromatography, and phospholipase C (PLC)-β1 expression was determined by immunoblot analysis with polyclonal antibodies specific for PLC-β1. RESULTS: Homogenous primary cell cultures from normal and glaucomatous human ciliary muscle were established and characterized. The data obtained can be summarized as follows: both n- and g-HCM cells exhibited similar morphologic characteristics and immunoreactivities. The effects of the agonists on AA release in both n- and g-HCM cells were in the following order: PGF2α > ET-1 > CCh; their effects on PGE2 release were in the following order: PGF2α > CCh > ET-1; and their effects on inositol phosphate production were in the following order: CCh > ET-1 > PGF2α. Both the basal- and stimulated release of AA were significantly higher in the g-HCM cells than in the n-HCM cells (for PGF2α, 60 versus 151%). The basal release of PGE2 in g-HCM cells was two- to fivefold higher than that of n-HCM cells, and there are alterations in the effects of the agonists on PGE2 release. Agonist-induced inositol phosphate production in g-HCM cells was considerably lower than that of n-HCM cells (CCh, 58 versus 421%), and the amount of PLC-β1 expressed in g-HCM cells, compared with that in n-HCM cells, was markedly reduced (by 44%). CONCLUSIONS: These data are the first to show that basal and agonist-induced AA release and inositol phosphate production as well as expression of PLC-β1 are altered in g-HCM cells compared with that of n-HCM cells. The molecular mechanisms underlying these alterations in g-HCM cells could include changes in sensitivity and number of receptors, overexpression of PLA2 and the cyclooxygenases, and underexpression of PLC-β1. Alterations in these signalling pathways in g-HCM cells could contribute to changes in the uveoscleral outflow pathway, which may lead to an increase in IOP in patients with glaucoma. Comparative studies on the signalling pathways in g- and n-HCM cells can provide important information about the regulation of uveoscleral outflow and the pathologic course of glaucoma.


Classification:

2.9 Ciliary body (Part of: 2 Anatomical structures in glaucoma)
3.3 Immunohistochemistry (Part of: 3 Laboratory methods)



Issue 4-1

Change Issue


advertisement

Oculus