advertisement

Topcon

Abstract #66722 Published in IGR 17-4

Red light of the visual spectrum attenuates cell death in culture and retinal ganglion cell death in situ

del Olmo-Aguado S; Núñez-Álvarez C; Osborne NN
Acta Ophthalmologica 2016; 94: e481-e491


PURPOSE: To ascertain whether red light, known to enhance mitochondrial function, can blunt chemical insults to cell cultures and ischaemic insults to the rat retina. METHODS: Raised intraocular pressure (IOP, 140 mmHg, 60 min) or ischaemia was delivered in complete darkness or in the presence of low intensity red light (16.5 watts/m(2) , 3000 lux, 625-635 nm) to one eye of each rat. Animals were killed at specific times after ischemia and retinas analysis for ganglion cell numbers, the localization of specific antigens or for changes in defined RNAs. RGC-5 cell cultures were also exposed to various chemical insults in the presence or absence of red light. Significant differences were determined by t-test and anova. RESULTS: Elevation of IOP causes changes in the localization of glial fibrillary acid protein (GFAP), calretinin, calbindin, choline acetyltransferase, ganglion cell numbers and an elevation (GFAP, vimentin, HO-1 and mTORC1) or reduction (Thy-1 and Brn3a) of mRNAs in the rat retina. These negative effects to the rat retina caused by ischaemia are reduced by red light. Moreover, chemical insults to cell cultures are blunted by red light. CONCLUSIONS: Low, non-toxic levels of red light focussed on the retina for a short period of time are sufficient to attenuate an insult of raised IOP to the rat retina. Since mitochondrial dysfunctions are thought to play a major role in ganglion cell death in glaucoma, we propose the potential use of red light therapy for the treatment of the disease.

Eye Research Foundation, Oviedo, Spain.

Full article

Classification:

5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)
11.8 Neuroprotection (Part of: 11 Medical treatment)



Issue 17-4

Change Issue


advertisement

WGA Rescources