advertisement
Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Formula: see text] elevations in dissociated and intact NPE cells. Swelling had no effect on [Formula: see text] levels in pigment epithelial (PE) cells, whereas depolarization evoked [Formula: see text] elevations in both NPE and PE cells. Swelling-evoked [Formula: see text] signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 μM) and were absent in Trpv4(-/-) NPE. In NPE, but not PE, swelling-induced [Formula: see text] signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.
Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132;
Full article2.9 Ciliary body (Part of: 2 Anatomical structures in glaucoma)
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.8 Pharmacology (Part of: 3 Laboratory methods)