advertisement

Topcon

Abstract #70831 Published in IGR 18-2

Interaction of primary human trabecular meshwork cells with metal alloy candidates for microinvasive glaucoma surgery

Wang WW; Watson KA; Dixon SJ; Liu H; Rizkalla AS; Hutnik CM
Clinical and Experimental Ophthalmology 2017; 45: 520-528

See also comment(s) by Daniel Stamer


BACKGROUND: Microinvasive glaucoma surgery (MIGS) is a relatively new addition to the glaucoma treatment paradigm. Small metallic stents are inserted into the trabecular meshwork in order to increase aqueous humour drainage. MIGS procedures are rapidly being adopted owing to a more favourable side effect profile when compared with traditional surgery. Remarkably, this rapid rate of utilization has occurred without any published studies on the effect of metal alloys used in these stents on human trabecular meshwork cells (HTMCs). Therefore, this study aimed to determine the effect of candidate metal alloys for MIGS on HTMC morphology, viability and function. METHODS: Human trabecular meshwork cells were cultured on the surfaces of titanium (polished and sandblasted), a titanium-nickel (nitinol) alloy and glass (as control substratum). Fluorescence imaging was used to assess cell morphology and spreading. A lactate dehydrogenase cytotoxicity assay, cell death detection ELISA, MTT cell viability assay, BrdU cell proliferation assay and fibronectin ELISA were also conducted. RESULTS: Cells cultured on sandblasted titanium exhibited significantly greater spreading than cells cultured on other substrata. In comparison, HTMCs cultured on nitinol displayed poor spreading. Significantly more cell death, by both necrosis and apoptosis, occurred on nitinol than on titanium and glass. Also, cell viability and proliferation were suppressed on nitinol compared with titanium or glass. Finally, HTMCs on both titanium and nitinol produced greater amounts of fibronectin than cells grown on glass. CONCLUSIONS: Substratum topography and metal alloy composition were found to impact morphology, viability and function of primary HTMC cultures.

Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

Full article

Classification:

12.8.2 With tube implant or other drainage devices (Part of: 12 Surgical treatment > 12.8 Filtering surgery)
2.5.1 Trabecular meshwork (Part of: 2 Anatomical structures in glaucoma > 2.5 Meshwork)
3.6 Cellular biology (Part of: 3 Laboratory methods)



Issue 18-2

Change Issue


advertisement

Topcon