advertisement
The objective of this study was to evaluate the effects of silibinin on cell proliferation in platelet-derived growth factor (PDGF)-treated human Tenon's fibroblasts (HTFs). The effect of silibinin on cell proliferation in PDGF-treated HTFs was determined by examining the expression of proliferating cell nuclear antigen (PCNA) and performing WST-1 assays. Cell cycle progression was evaluated using flow cytometry. The related cyclins and cyclin-dependent kinases (CDKs) were also analyzed using western blot. A modified rat trabeculectomy model was established to evaluate the effect of silibinin on cell proliferation in vivo. Western blot analysis was carried out to determine the effect of silibinin on the expression of PDGF receptor and on the downstream signaling pathways regulated by PDGF receptor. PDGF elevated the expression of PCNA in HTFs, and this elevation was inhibited by silibinin. The inhibitory effect of silibinin on cell proliferation was also confirmed via WST-1 assay. PDGF-stimulated cell cycle in HTFs was delayed by silibinin, and the related cyclin D1 and CDK4 were also suppressed by silibinin. In the rat model of trabeculectomy, silibinin reduced the expression of PCNA at the site of blebs in vivo. The effects of silibinin on PDGF-stimulated HTFs were mediated via the downregulation of PDGF receptor-regulated signaling pathways, such as ERKs and STATs, which may be partially caused by the downregulation of N-glycosylation of PDGF receptor beta (PDGFRβ). The effect of silibinin on modulation of N-glycosylation of PDGFRβ was mediated in a proteasome-dependent manner. Silibinin inhibited cell proliferation and delayed cell cycle progression in PDGF-treated HTFs in vitro. PDGF also modulated the process of N-glycosylation of the PDGFRβ in a proteasome-dependent manner. Our findings suggest that silibinin has potential therapeutic applications in glaucoma filtering surgery.
Full article
12.8.10 Woundhealing antifibrosis (Part of: 12 Surgical treatment > 12.8 Filtering surgery)
3.6 Cellular biology (Part of: 3 Laboratory methods)
3.5 Molecular biology incl. SiRNA (Part of: 3 Laboratory methods)
2.3 Sclera (Part of: 2 Anatomical structures in glaucoma)