advertisement

WGA Rescources

Abstract #71624 Published in IGR 18-3

Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review

Jirsova K; Jones GL
Cell and tissue banking 2017; 18: 193-204


The use of amniotic membrane in ophthalmic surgery and other surgical procedures in the fields of dermatology, plastic surgery, genitourinary medicine and otolaryngology is on the increase. Furthermore, amniotic membrane and its epithelial and mesenchymal cells have broad use in regenerative medicine and hold great promise in anticancer treatment. Amniotic membrane is a rich source of biologically active factors and as such, promotes healing and acts as an effective material for wound dressing. Amniotic membrane supports epithelialization and exhibits anti-fibrotic, anti-inflammatory, anti-angiogenic and anti-microbial features. Placentas utilised in the preparation of amniotic membrane are retrieved from donors undergoing elective caesarean section. Maternal blood must undergo serological screening at the time of donation and, in the absence of advanced diagnostic testing techniques, 6 months postpartum in order to cover the time window for the potential transmission of communicable diseases. Amniotic membrane is prepared by blunt dissection under strict aseptic conditions, then is typically transferred onto a nitrocellulose paper carrier, usually with the epithelial side up, and cut into multiple pieces of different dimensions. Amniotic membrane can be stored under various conditions, most often cryopreserved in glycerol or dimethyl sulfoxide or their mixture with culture medium or buffers. Other preservation methods include lyophilisation and air-drying. In ophthalmology, amniotic membrane is increasingly used for ocular surface reconstruction, including the treatment of persistent epithelial defects and non-healing corneal ulcers, corneal perforations and descemetoceles, bullous keratopathy, as well as corneal disorders with associated limbal stem cell deficiency, pterygium, conjunctival reconstruction, corneoscleral melts and perforations, and glaucoma surgeries.

Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, General Teaching Hospital and 1st Faculty of Medicine, Charles University, Czech Republic, Ke Karlovu 2, 128 08, Prague 2, Czech Republic. katerina.jirsova@lf1.cuni.cz.

Full article

Classification:

12.8.5 Other (Part of: 12 Surgical treatment > 12.8 Filtering surgery)
12.8.10 Woundhealing antifibrosis (Part of: 12 Surgical treatment > 12.8 Filtering surgery)



Issue 18-3

Change Issue


advertisement

WGA Rescources