advertisement

Topcon

Abstract #72643 Published in IGR 18-4

Underlying Microstructure of Parapapillary Deep-Layer Capillary Dropout Identified by Optical Coherence Tomography Angiography

Lee EJ; Kim TW; Lee SH; Kim JA
Investigative Ophthalmology and Visual Science 2017; 58: 1621-1627


PURPOSE: To characterize the microstructure underlying the parapapillary deep-layer microvasculature dropout (MvD) identified by optical coherence tomography (OCT) angiography (OCTA) in eyes with primary open-angle glaucoma (POAG). METHODS: Parapapillary MvD was defined as a focal sectoral capillary dropout without any visible microvascular network identified in deep-layer en face images obtained using swept-source OCTA. The peripapillary microstructure was characterized in 188 POAG patients with MvD in the parapapillary deep layer. Twelve radial optic nerve images were obtained using swept-source OCT to examine the peripapillary structure and measure the juxtapapillary choroidal thickness (JPCT). The JPCT was also measured in 72 age-matched POAG eyes having β-zone parapapillary atrophy (PPA) without an MvD (control group). RESULTS: Microvascular dropouts were observed within the areas with a PPA involving the β-zone, γ-zone, and a mixture of both zones in 72, 57, and 59 eyes, respectively. Choroid of noticeable thickness was observed without obvious thinning in the PPA area when the MvD was associated with the β-zone. The JPCT was comparable between eyes with MvD and control eyes. There was no distinguishable feature in the microstructure of the γ-zone, regardless of whether it was associated with MvD. CONCLUSIONS: Optical coherence tomography angiography showed MvDs in the parapapillary deep layers that were associated with both β- and γ-zones within the PPAs. The microstructure of PPAs with MvDs was not distinguishable from that of PPAs not associated with MvDs.

Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.

Full article

Classification:

6.9.2.2 Posterior (Part of: 6 Clinical examination methods > 6.9 Computerized image analysis > 6.9.2 Optical coherence tomography)
6.11 Bloodflow measurements (Part of: 6 Clinical examination methods)



Issue 18-4

Change Issue


advertisement

Oculus