advertisement

WGA Rescources

Abstract #73874 Published in IGR 19-1

Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats

Choh V; Gurdita A; Tan B; Feng Y; Bizheva K; McCulloch DL; Joos KM
Documenta Ophthalmologica 2017; 135: 121-132


PURPOSE: Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation. METHODS: Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m2) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation. RESULTS: Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p < 0.0001). The absolute interocular differences in IOP-associated enhancement of pSTR amplitudes for ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004). CONCLUSIONS: The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.

School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. vchoh@uwaterloo.ca.

Full article

Classification:

3.8 Pharmacology (Part of: 3 Laboratory methods)
5.1 Rodent (Part of: 5 Experimental glaucoma; animal models)



Issue 19-1

Change Issue


advertisement

WGA Rescources