advertisement
PURPOSE: This study aimed to identify associated genes with primary open-angle glaucoma (POAG) and explore the potentially modular mechanism underlying POAG. METHODS: We downloaded gene expression profiles data GSE27276 from gene expression omnibus and identified differentially expressed genes between POAG patients and normal controls. Then, gene ontology analysis and kyoto encyclopedia of genes and genomes pathway enrichment were performed to predict the DEGs functions, followed with the construction, centrality analysis, and module mining of protein-protein interaction network. RESULTS: A total of 552 DEGs including 249 up-regulated and 303 down-regulated genes were identified. The up-regulated DEGs were significantly involved in cell adhesion molecule, while the down-regulated DEGs were significantly involved in complement and coagulation cascades. Centrality analysis screened out 20 genes, among which COL4A4, COL3A1, COL1A2, ITGB5, COL5A2, and COL5A1 were shared in ECM-receptor interaction and focal adhesion pathways. In the sub-network, COL5A2, COL8A2, and COL5A1 were significantly enriched in biological function of eye morphogenesis and eye development, while LAMA5, COL3A1, COL1A2, and COL5A1 were significantly enriched in vasculature development and blood vessel development. CONCLUSIONS: Six genes, including COL4A4, COL3A1, COL1A2, ITGB5, COL5A2, and COL5A1, ECM-receptor interaction and focal adhesion pathway, are potentially involved in the pathogenesis of POAG via participating in pathways of ECM-receptor interaction and focal adhesion.
Department of Ophthalmology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000, China. haiyanqiu159@hotmail.com.
Full article3.4.2 Gene studies (Part of: 3 Laboratory methods > 3.4 Molecular genetics)